Query Bootstrapping: A Visual Mining Based Query Expansion

نویسندگان

  • Siriwat Kasamwattanarote
  • Yusuke Uchida
  • Shin'ichi Satoh
چکیده

Bag of Visual Words (BoVW) is an effective framework for image retrieval. Query expansion (QE) further boosts retrieval performance by refining a query with relevant visual words found from the geometric consistency check between the query image and highly ranked retrieved images obtained from the first round of retrieval. Since QE checks the pairwise consistency between query and highly ranked images, its performance may deteriorate when there are slight degradations in the query image. We propose Query Bootstrapping as a variant of QE to circumvent this problem by using the consistency of highly ranked images instead of pairwise consistency. In so doing, we regard frequently co-occurring visual words in highly ranked images as relevant visual words. Frequent itemset mining (FIM) is used to find such visual words efficiently. However, the FIM-based approach requires sensitive parameters to be fine-tuned, namely, support (min/max-support) and the number of top ranked images (top-k). Here, we propose an adaptive support algorithm that adaptively determines both the minimum support and maximum support by referring to the first round’s retrieval list. Selecting relevant images by using a geometric consistency check further boosts retrieval performance by reducing outlier images from a mining process. An important parameter for the LO-RANSAC algorithm that is used for the geometric consistency check, namely, inlier threshold, is automatically determined by our algorithm. We further introduce tf-fi-idf on top of tf-idf in order to take into account the frequency of inliers (fi) in the retrieved images. We evaluated the performance of QB in terms of mean average precision (mAP) on three benchmark datasets and found that it gave significant performance boosts of 5.37%, 9.65%, and 8.52% over that of state-of-the-art QE on Oxford 5k, Oxford 105k, and Paris 6k, respectively. key words: image retrieval, instance search, query expansion, frequent itemset mining, visual word mining, query bootstrapping, adaptive support, adaptive inlier threshold

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Query expansion based on relevance feedback and latent semantic analysis

Web search engines are one of the most popular tools on the Internet which are widely-used by expert and novice users. Constructing an adequate query which represents the best specification of users’ information need to the search engine is an important concern of web users. Query expansion is a way to reduce this concern and increase user satisfaction. In this paper, a new method of query expa...

متن کامل

Query Architecture Expansion in Web Using Fuzzy Multi Domain Ontology

Due to the increasing web, there are many challenges to establish a general framework for data mining and retrieving structured data from the Web. Creating an ontology is a step towards solving this problem. The ontology raises the main entity and the concept of any data in data mining. In this paper, we tried to propose a method for applying the "meaning" of the search system, But the problem ...

متن کامل

QEA: A New Systematic and Comprehensive Classification of Query Expansion Approaches

A major problem in information retrieval is the difficulty to define the information needs of user and on the other hand, when user offers your query there is a vast amount of information to retrieval. Different methods , therefore, have been suggested for query expansion which concerned with reconfiguring of query by increasing efficiency and improving the criterion accuracy in the information...

متن کامل

Non-zero probability of nearest neighbor searching

Nearest Neighbor (NN) searching is a challenging problem in data management and has been widely studied in data mining, pattern recognition and computational geometry. The goal of NN searching is efficiently reporting the nearest data to a given object as a query. In most of the studies both the data and query are assumed to be precise, however, due to the real applications of NN searching, suc...

متن کامل

Text Mining Based Query Expansion for Chinese IR

Query expansion has long been suggested as a technique for dealing with word mismatch problem in information retrieval. In this paper, we describe a novel query expansion method which incorporates text mining techniques into query expansion for improving Chinese information retrieval performance. Unlike most of the existing query expansion strategies which generally select indexing terms from t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 99-D  شماره 

صفحات  -

تاریخ انتشار 2016